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STABILIZATION AND EXTREHAL PROPERTIES OF RESONANT MODES 
OF ~IPEDAL LOCONOT~ON* 

V.V. BELETSKII and M.D. GOLUBITSKAYA 

The resonance property of anthropomorphic locomotion is investigated. 
[A form of locomotion is said to be resonant (periodic) if all the 
elements of the walking device oscillate at commensurable frequencies**). 
A control law is demonstrated under which a periodic nominal mode is 
non-asymptotically stable. The energy requirements of periodic and 
neighbouring non-periodic modes are compared. It is shown that the 
energy-consumption functional has a local minimum on stable resonant 
modes. 

7. StQt~nt of the probZe81, lbmmottin as a resixxanc e phenol. It is an obvious 
fact that regular locomotion is resonant: all elements of the walking device oscillate "in 
time" with the locomotion, so that their frequencies are commensurable with the step frequency. 
Many studies of the process of bipedal locomotion /l-4/ have been concerned with the descrip- 
tion of regular, periodic locomotion. Nevertheless, these studies have not been able to 

observe certain specific effects. Indeed, resonant and non-resonant motions can be dis- 
tinguished only by actual comparison. It follows that periodic locomotion must be studied 
together with its non-periodic neighbourhood. 

A specific resonance effect is, for example, the property of stable periodic motions to 
maximize or minimize a fairly large class of functionafs /5-8/. In particular,it is a reason- 
able assumption that the energy requirements of locomotion are minimized by well-organized 
stable periodic modes. To verify this assumption we shall construct a simple model of periodic 
locomotion which is stable in a certain sense, and compare the values assumed by the energy 
functional in periodic and nearby non-periodic walking modes. 

2. Description of the mdet. Fundanrentat equations. Consider a bipedal walking device 
consisting of a body and two weightless articulated legs, eachmade of two sections, attached 
by a hinge to the body at a point 0 (Fig.1). It is assumed that the device is supported at 
any specific time by only one leg, without impact; each leg touches the supporting surface at 
a single point; the constraint is unilateral. 

Let us assume that the device is moving in the NXZ plane (Fig.1). We shall use the 
following notation: p is the distance from 0 to centre of mass c of body; M is the mass, 
J is the moment of inertia of the body about 0; X, Z are the coordinates of O;Xy,Zv are the 
coordinates of the support point; 8 is the angle between the vector OC and the positive 
direction of the NZ axis (Fig.1). 

We define the following non-dimensional variables: 

The derivative of the angle 8 with respect to non-dimensional time 7 will be denoted 
by 8'. 

The body oscillates in the plane, obeying the following equation in terms of the variables 
(2.1) /4/: 

(j + (2. - zv) cos 0 + (x - x%) sin 8) 8" + ((.z - zY) cos 8 + 
(2 - zy) sin 8) 8'2 - (j + z~) sin 8 -t- i cos e = (j + z”)(.z - zy) - 

z” (2 - zvf 

(2.2) 
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The non-dimensional coordinates TV? ZY of the points at which the extremities are placed 

are piecewise-constant functions of time, so that the functions x-XV, z-zzv occurring in 
Eq.(2.2) are discontinuous (piecewise-continuous). 

We shall assume that the device is subject to some control system which is capable of 
driving the suspension point of the legs according to any prescribed sufficiently smooth law 

of motion s(.c), z(z). According to the semi-inverse method of given synergy /l/, the func- 
tion of the control can be fulfilled by the trajectory, the velocity or the acceleration of 
this point. 

We consider regular locomotion along a horizontal straight line with a step of duration 
t,, and length ?.: 

5v = (v - 1) 1, ZY = 0, 7 E [(Y - 1) To, YTJ Y -2 1, 2, . (2.3) 

The time G, is the fundamental period of the process. Let us suppose that the point of 
attachment of the legs is moving in accordance with a given z,-periodic law, while the law 
of motion of the body has to be determined by integrating Eq.(2.2). We shall say that the 
locomotion is periodic or resonant if the body oscillates an integral number of times over 
an integral number of steps: 0 (T + %) = e (T), where ZK = const is the period of the body's 
oscillations, no,, = mtg, VL, II E N+. 

The average power consumed per unit path in N steps is measured by the following func- 
tional /4/: 

lua=~~‘(,~(e’--a’)lfi.(a.--P.)l)d. 
0 

Here 4, u are the controlling torques at the hip and knee of the supporting leg and a and p 
are the angles between the thigh and shin, respectively, and the vertical. 

In our model the controlling torques 4, u as well as the angles a and p, can be evaluated 
by closed formulae in terms of the functions z(~),z(z) and e(r) and their derivatives 
with respect to time /4/. 

3. Nominal mode. The fundamental mode will be a periodic "gait" in which the body 
oscillates once for each walking step n=m=l, 

For example, let us consider "comfortable"locomotion/4, 9, lO/, in which zx = Z@ and 
the point of attachment of the legs moves at a constant height h relative to the supporting 
surface and at a constant velocity u = lir,. If we assume that the step is symmetric (s(O) = 
-l/2), the motion of the point 0 is governed by the law 

z== a, = UT - 1'2 z=z*=h (3.1) 

and Eq.(2.2) becomes 

((1 + h cos 0) + (z* - J,) sin e) 8” + ((z* - xv) cos e - h sin e) 8’2 - 
j sin e = j (z* - z,) 

Under conditions (2.3) and (3.1) this equation has a continuous T,-periodic solution 

0, (7). The comfortable mode x*(z),z&), t?,(X) will be considered as the nominal mode. 

Fig.1 Fig.2 

4. The stabilization problem. It is well-known that the motion e,(T) of the body in 
comfortable lomotion is unstable /4/, and controlling torques at the joints cannot ensure the 
existence of near-nominal non-periodic walks. To obtain a family of walks with this property, 
we must construct an algorithm that will stabilize comfortable locomotion. 
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Various processes of free stabilization can be accomplished, e.g., by regulating the 
length and duration of the step /4/. In this paper we shall solve a different problem: to 
create stable To-periodic oscillations of the body in periodic locomotion with fixed step 
length l and fixed step duration z,,. The problem may be formulated as follows. 

Let the oscillations of the body be described by Eq.(2.2) and assume that the footprints 

Fig.3 Fig.4 

oz 

Fig.6 

(2.3) are given. It is requiredto find a control law of the walking device such that: 1) a 
comfortable motion (3.1) of the point of attachment of the legs is possible; 2) Eq.(2.2) has 
a r,-periodic solution 8 = 8*(r) in the special case (3.1); (3) the particular solution 

%fr) is stable in some sense. 

5. Stabilization of the body (the limiting problem). Let us consider Eq.(2.2) on the 
assumption that the control is the acceleration of the point of attachement. Define 

5" : o arctg k(6 - B,), z = h (5.1) 

If there is no controlling torque at the hip-joint, the body of the device may be treated 
as a physical pendulum on a mobile base. If the point of attachement remains at a constant 
height (z = h), the unstable equilibrium (9= 0) of the pendulum may be stabilized by sub- 
jecting the coordinate x to the control law z" = CI sign 0, Q = coast, o> 0. This simple piecewise- 
constant control law enables us to give an analytical treatment of the stabilization of the 
pendulum (see our preprint cited in the footnote at the beginning of this paper). The attempt 
to apply a similar control in our case, where we have to stabilize the body in locomotion 
(Sect.4), obliged us to replace the discontinuous function sign@-S8,) by the continuous func- 
tion amtg k (e - 6,), k = const, which is better suited to numerical manipulation. 

The system of Eqs.(2.2) and (5.1) has a particular solution z = .z*, 9 = 6,. In the general 
case, horizontal motion of the point is non-comfortable and the law Z(T) is determined by 
simultaneous integration of Eqs.(2.2) and (5.1). 

As a first approximation to the solution of system (2.2), (5.1), let us consider the 
following limiting problems. Suppose that the motion of the point 0 is comfortable, r (r) 
in Eq.(2.21 is defined by (3.1), but the body is subjected to the control x"(t), where 
r"(r) in (2.2) is defined by (5.1). (The equations of the limiting problem constitute an 
asymptotic form of system (2.21, (5.11, in the case of a body of small dimensions; see our 
preprint cited above). Eq.(2.2) in the limiting problem is decoupled from (5.1) and becomes 
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an equation with z,-periodic piecewise-continuous coefficients, which has a To-periodic 
solution 0 = e,(z). This solution will,now be investigated for stability. 

We will first consider the case in which the footprints (2.3) determine not locomotion 
but standstill: 1 = 0, xv = 0. The corresponding comfortable mode is Z*(T) = 0, Z,(T) = h, O,(T) = 
0. Linearizing Eq.(2.2) according to the assumptions of the limiting problem in the neighbour- 
hood of O* = 0: 8" = j (1 - ak (h + 1)) e/(7 + h), we obtain the necessary conditions for the 
body to be stabilized at a standstill: 

ak > I, (1 + h) (5.2) 

The stabilizing effect of the control (5.1), (5.2) in the limiting problem with non-zero 

step length has been verified numerically. The computations were run for a device with the 

following anthropomorphic data: M=70kg, J = 9.63 kg-m2 , p = 0.24 m, the length of each 

element in the aritculated leg 0.425 m; the dimensional parameters of nominal mode are H= 

ph = 0.8 m; t, = TV [Jl(Mph)]% = 0.625 sec. Numerical integration of the limiting locomotion problem 

with non-dimensional step length 1.67 and control parameters o= O.i, k= 100 yielded the 

results shown in Fig.2, which shows the pattern of point transformations in the phase space 

(0, 0') in one period Q. The fixed point of the transformation is thht corresponding to 

periodic motion O,(r). All the point transformations lie on ellipsoidal curves, demonstrating 
the stability of the nominal mode. The different curves correspond to different deviations 
AO' (0) from the initial data O,'(O) of the periodic mode on the assumption that AO(0) =-- 0. 

A general analysis of the computer treatment of the limiting problem has shown that the 

control (5.1), (5.2) can stabilize the nominal mode if the non-dimensional step length 1 
remains less than a certain critical value lo(u,k). For any [,O<L<l,(o,k) there is a 

neighbourhood of the point (O,(O), O,'(O)) in the phase plane (0,0') which generates a family 
of near-nominal non-periodic gaits (beyond the boundary of this neighbourhood feedback breaks 

down /ll/ and the device falls). A few specific values of the energy functional (2.4) were 
computed for nominal periodic and nearby non-periodic modes; the number N of steps over which 
the functional was averaged was taken to be so large that the functional was independent of 
N to within the given accuracy. 

Fig.3 shows some plots of the energy functional wN for nearby non-periodic modes against 

the initial angular velocity mismatch AW= O'(O)- Cl,'(O) of the body. Figs.2 and 3 together 
clearly reflect the expected result: the energy required by locomotion is a minimum in a 

stable resonant mode. 

6. Stabilization of &xxnnotion. We now consider the general problem (2.2), (5.1). It 

can be shown that the control (5.1), (5.2), which stabilizes the motion of the body in the 
limiting problem, does not do so in the full problem of locomotion. The control (5.1) does 
not include feedback from the deviation of the body's forward motion from the nominal mode 

z*(7) i.e., the forward motion is not stabilized. This causes instability both of forward 

motion and of the body's oscillations. We shall refer to simultaneous stabilization of both 
the forward and oscillatory motion of the body as stabilization of locomotion. 

To achieve such stabilization, we add a term to the control to represent feedback of the 

deviation z - I* from the nominal forward motion. Instead of (5.1), therefore, we have a 

new law of motion: 

z” = u arctg k (0 - 0,) + p (z - .r*), p = const, .z = h (6.1) 

Let us investigate system (2.2), (6.1) for stability. Let I = 0, x,, = 0; then 5* (7) EC 

0, O* (t) zz 0. Linearizing the system in the neighbourhood of .z*, 8,,we obtain 

0" = i (i + h)-' ((1 - uk (h + 1)) 0 + (1 - (1 + h)& (l=) 

I" = j (uktl + pr) 

The conditions for the stability of this linear system can be written in the form 

ok <p < (I + ok (h + 1) - 21/ak (1 - i))l(i + h) 

ok < l/(1 - j) 
(6.3) 

The parameters u, k, p satisfying these inequalities will guarantee non-asymptotic stability 
of the linear system in the case of standstill. 

Fig.4 shows the parameter plane (uk, p) with the region (6.3) hatched. Note that 

according to (6.3) and Fig.4, any motion with p =O, i.e., with no feedback from forward 
motion in the control, is unstable. 

In our investigation of the complete problem of locomotion, described by Eqs.(2.2) and 

(6.1), we selected control parameters which satisfied the necessary conditions (6.3) for 
stability in a standing position. Numerical integration of system (2.2), (6.1) subject to 
conditions (6.3) showed that over a certain set of values of 1, 0 < 2 < Z,(u, k, p), the control 
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(6.1) does stabilize the motion in a certain sense. Over a long time interval IO, NT,,], where 
N > 50 (in our computations N was chosen so as to give the functional WN a stationary 
value), the perturbed motion S (r)* r (r) remained in a bounded neighbourhood of the com- 

fortable mode 0, (-r), X* (r), which is small together with the perturbation. 
Figs.5 and 6 illustrate different types of behaviour of the functions B (7). I (rf - +* (7) in 

perturbed motion. The non-periodic mode depicted here corresponds to control parameters 
* = 10, k = i, p = -9.4, a step length I= 2.50 and a perturbation A@' = 0.07. The curve 8. (7) 
is shown for comparison. It is obvious that the perturbed motion follows a pattern similar 
to the nominal one, with no systematic departures from nominal over this particular time 
interval. 

ll'& 

%i 

0.2 

I AS' 

SKI Q 0.05 

Fig.7 

1 

Fig.8 

I 

-0.m 0 0.w 0.48 

Fig.9 

Thus, subject to conditions (6.31, the control (6,11 generates a family of non-periodic 
motions which remain close to nominal periodic locomotion over a fairly long time interval. 

7. ExtremaZ pOp?PtiQS Of PQSOMnt dQS Of 'hWmOtim. Fig.7 shows the results of a 
numerical investigation of the energy requirements of nominal periodic modes and their non- 
periodic neighbourhoods. The functional WN is plotted against the initial perturbations of 
the angular velocity A8’. on the assumption that the other phase coordinates are unperturbed: 
the solid curves are drawn for parameter values u = 10, k = --1 and p = 9.4, the dashed 
curves are for CT =5, k= -9 and p = 4.9, and the dash-dot curves are for e = 15, k = --I 
and p = 13.9. The figures in the plot indicate the appropriate non-dimensional step lengths 
2 (the dimensional lengths corresponding to 1 =i 0.83 ... 2.50 are L = 0.2 . ..0.6m). In all 
cases WN, plotted against AW, has a local extremum at the nominal periodic mode,i.e.,at 
80' = 0. For small step lengths WN is a minimum at AS' = 0. In that case ?,-periodic 
(resonant) locomotion is energetically preferable to nearby non-resonant modes. 

As the step length is increased, the minimum may bifurcate: the value of WN at A6' =O" 
becomes a local maximum, and two local minima of WY appear in the neighbourhood of the 
nominal, at certain values of AS+ 0. 

The appearance of the local minimum of WN is a consequence of a known fact: comfortable 
modes of locomotion are energetically inferior to non-comfortable modes /4, 12, 13/. It is 
interesting that the new local minima of w N are achieved at new periodic and stable modes of 
locomotion. 

Fig.8 is a phase portrait of the oscillations of the body in one of these modes (which 
turned out to be 4z,-periodic; parameters: o = 10, k = --1,p = 9.4, 8 = 2.09). The body performs 
one oscillation in four walking steps (the cusps in Fig.8 represent the times at which the 
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body shifts from one leg to the other). For comparison, the phase portrait of a nominal 

comfortable To-periodic mdde is also shown (the dashed curve). The two local minima of wx 

in the plot correspond to the same mode, but phase-shifted. 
Thus, based on the extremal property of the energy functional, one obtains new periodic 

modes without prior periodicity assumptions. 
It should be noted that the local minimum of WN is achieved simultaneously with respect 

to all phase variables. Fig.9, for example, shows plots of wN against the deviations A8,Ax, 
AX' (the solid, dashed and dash-dot curves, respectively) at A@’ = A&‘, where A&’ 

corresponds to the above-mentioned 4z,-periodic motion. 

On the basis of the above investigation, it is reasonable to postulate that the energy 

requirements of locomotion have local minima at stable periodic (resonant) modes. This may 

well be at least one of the reasons for the observed resonance properties of bipedal loco- 
motion. 
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